基于Inception-LSTM-Attention的冷水机组传感器偏差故障诊断方法
Fault diagnosis method of chiller sensor deviation based on Inception-LSTM-Attention作者机构:天津大学电气自动化与信息工程学院天津300072
出 版 物:《中南大学学报(自然科学版)》 (Journal of Central South University:Science and Technology)
年 卷 期:2023年第54卷第1期
页 面:102-112页
核心收录:
学科分类:08[工学] 080401[工学-精密仪器及机械] 0804[工学-仪器科学与技术] 080402[工学-测试计量技术及仪器] 0838[工学-公安技术]
主 题:冷水机组 传感器 故障诊断 Inception模块 长短时记忆网络 注意力机制
摘 要:为提升传统的冷水机组传感器偏差故障诊断方法的特征提取效果及故障诊断准确率,提出一种基于Inception模块和融合注意力机制(Attention)的长短时记忆网络(LSTM)相结合(Inception-LSTM-Attention)的冷水机组传感器偏差故障诊断方法。该方法通过Inception模块从冷水机组传感器时序数据中提取多尺度的实时特征,并利用LSTM学习传感器时序数据中存在的时间相关关系;通过在LSTM中融合注意力机制来保证其最终的输出综合了各个时间节点的输出,提升重要信息的影响程度,最大化保留时序数据的全局信息。同时,设计跳跃连接支路缓解网络中存在的梯度消失问题。最后,使用冷水机组实验平台的传感器实测数据对所提方法进行实验验证。研究结果表明:本文方法对于压力类、温度类各传感器的偏差故障诊断平均准确率均在94%以上;对于各传感器中较小偏差故障的故障诊断准确率均在87.6%以上;与主成分分析、卷积神经网络、Inception以及Inception-LSTM这4种方法相比,Inception-LSTM-Attention模型的传感器偏差故障诊断准确率更高。