Multifunctional organically modified graphene with super-hydrophobicity
Multifunctional organically modified graphene with super-hydrophobicity作者机构:Institute of Textiles and Clothing The Hong Kong Polytechnic University Hong Kong Special Administrative Region (SAR) 999077 China
出 版 物:《Nano Research》 (纳米研究(英文版))
年 卷 期:2014年第7卷第3期
页 面:418-433页
核心收录:
学科分类:081702[工学-化学工艺] 08[工学] 0817[工学-化学工程与技术]
基 金:the funding from Research Grants Council (RGC) of the Hong Kong SAR Government
主 题:low-temperature thermallyfunctionalized graphene organic modification organically modifiedgraphene liquid marbles polymer nanocomposites
摘 要:In order to bring graphene materials much closer to real world applications, it is imperative to have simple, efficient and eco-friendly ways to produce processable graphene derivatives. In this study, a hydrophilic low-temperature thermally functionalized graphene and its super-hydrophobic organically modified graphene derivative were fabricated. A unique structural topology was found and some of the oxygen functionalities were retained on the thermally functionalized graphene surfaces, which facilitated the subsequent highly effective organic modification reaction and led to the super-hydrophobic organically modified graphene with multi functional applications in liquid marbles and polymer nanocomposites. The organic modification reaction also restored the graphenic conjugated structure of the thermally functionalized graphene, particularly for organic modifiers having longer alkyl chains, as confirmed by various characteri- zation techniques such as electrical conductivity measurements, ultraviolet/visible spectroscopy and selected area electron diffraction. The free-standing soft liquid marble was fabricated by wrapping a water droplet with the super-hydrophobic organically modified graphene, and showed potential for use as a microreactor. As for the polymer nanocomposites, a strong interfacial adhesion is believed to exist between an organic polymer matrix and the modified graphene because of the organophilic coating formed on the graphene base, which resulted in large improvements in the thermal and mechanical properties of the polymer nanocomposites with the modified graphene, even at very low loading levels. A new avenue has therefore been opened up for large-scale production of processable graphene derivatives with various practicable applications.