基于自监督特征增强的CNN-BiLSTM网络入侵检测方法
CNN-BiLSTM network intrusion detection method based onself-supervised feature enhancement作者机构:南京信息工程大学江苏省气象灾害预报预警与评估协同创新中心南京210044
出 版 物:《电子测量与仪器学报》 (Journal of Electronic Measurement and Instrumentation)
年 卷 期:2022年第36卷第10期
页 面:65-73页
核心收录:
学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 0839[工学-网络空间安全] 081104[工学-模式识别与智能系统] 08[工学] 0835[工学-软件工程] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)]
基 金:国家重点研发计划(2021YFE0105500) 国家自然科学基金(62171228)项目资助
摘 要:针对网络入侵检测中攻击样本和流量特征不足的问题,提出一种基于自监督特征增强的CNN-BiLSTM网络入侵检测方法,实现在流量数据中检测异常网络流量的目标。通过分析流量特征数据分布差异,采用IQR异常值处理方法进行数据预处理,使用自编码器对攻击样本进行数据增强,构建CNN-BiLSTM神经网络和自编码器组成半自监督模型,分别提取高维流量特征和自监督特征,将组合特征作为最终特征输入到分类模型中进行预测分类,实现网络入侵检测。实验结果表明,与其他入侵检测方法相比,所提方法在准确率和F1分数上分别达到了85.7%和85.1%,能够有效提高网络入侵的检测精度以及对未知攻击的检测能力。