LEBESGUE DECOMPOSITION AND BARTLE-DUNFORD-SCHWARTZ THEOREM IN PSEUDO-D-LATTICES
LEBESGUE DECOMPOSITION AND BARTLE-DUNFORD-SCHWARTZ THEOREM IN PSEUDO-D-LATTICES作者机构:Dipartimento di Matematica e Informatica Università della BasilicataViale dell'Ateneo Lucano 10 85100 Potenza Italy
出 版 物:《Acta Mathematica Scientia》 (数学物理学报(B辑英文版))
年 卷 期:2013年第33卷第3期
页 面:653-677页
核心收录:
学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学]
主 题:Pseudo-effect algebra pseudo-D-lattice D-uniformity lattice uniformity mod-ular measure
摘 要:Let L be a pseudo-D-lattice. We prove that the exhaustive lattice uniformities on L which makes the operations of L uniformly continuous form a Boolean algebra isomorphic to the centre of a suitable complete pseudo-D-lattice associated to L. As a consequence, we obtain decomposition theorems such as Lebesgue and Hewitt-Yosida decompositions--and control theorems such as Bartle-Dunford Schwartz and Rybakov theorems--for modular measures on L.