基于Penrose铺砌的数字图像重要性采样算法
A Digital Image Importance Sampling Algorithm Based on Penrose Tiling作者机构:苏州幼儿师范高等专科学校基础部江苏苏州215000 中国电子科技集团公司五十二研究所浙江杭州310000 南京晓庄学院教师教育学院江苏南京211171
出 版 物:《南京晓庄学院学报》 (Journal of Nanjing Xiaozhuang University)
年 卷 期:2022年第38卷第6期
页 面:113-118页
学科分类:08[工学] 080203[工学-机械设计及理论] 0802[工学-机械工程]
基 金:国家自然科学基金(61502137) 江苏省高等教育教改研究(2021JSJG570)
主 题:Penrose铺砌 自适应细分 矫正向量表 非周期铺砌
摘 要:重要性采样是数字图像处理领域的研究热点.在改进Penrose铺砌基本多边形的基础上,提出一种数字图像重要性采样算法.算法改进了Penrose铺砌的胖瘦菱形并利用其变换得到的6种多边形对图像进行非周期性铺砌,依据图像自身特征对非周期铺砌进行自适应细分,根据细分之后的图形产生相应的采样点,并通过控制细分程度来控制采样点的数量;为滤除采样产生的噪声,利用“斐波那契码设定密度阈值,根据每个初始采样点的密度阈值判断该采样点的去留,从而降低采样产生的噪声;最后根据铺砌结构和原始图像的纹理重要性,创建一个8×21的二维数组(矫正向量表)来优化采样点,优化后的采样点集摆脱了Penrose铺砌的相对固定性,分布更加均匀.实验表明,该采样模型符合数字图像采样的光谱特性、精度高,符合原始图像特征.