咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >苹果品质动态无损感知及分级机器手系统 收藏

苹果品质动态无损感知及分级机器手系统

Dynamic nondestructive sensing and grading manipulator system for apple quality

作     者:彭彦昆 孙晨 赵苗 Peng Yankun;Sun Chen;Zhao Miao

作者机构:中国农业大学工学院北京100083 国家农产品加工技术装备研发分中心北京100083 

出 版 物:《农业工程学报》 (Transactions of the Chinese Society of Agricultural Engineering)

年 卷 期:2022年第38卷第16期

页      面:293-303页

核心收录:

学科分类:08[工学] 0828[工学-农业工程] 082801[工学-农业机械化工程] 081101[工学-控制理论与控制工程] 0811[工学-控制科学与工程] 081102[工学-检测技术与自动化装置] 

基  金:国家重点研发计划项目(2016YFD0400905-05) 

主  题:机器视觉 可见/近红外光谱 苹果 无损感知 分级 机器手系统 

摘      要:为了实现灵活高效的苹果多品质指标检测分级,基于机器视觉技术及可见/近红外光谱技术,开发了用于苹果内外部品质无损感知及分级的机器手系统。机器手系统采用六轴机械臂搭载自行研发的末端执行器,末端执行器上装载有光学传感器与抓取结构,可以抓取流水线上的苹果并同时采集苹果的光谱进行糖度检测。使用CMOS相机采集苹果图像,训练并使用PP-YOLO深度学习目标检测模型处理采集的苹果图像,计算苹果的坐标位置实现苹果的动态定位,并获取苹果的果径大小、着色度信息实现外部品质检测。采集苹果样本光谱,结合不同的光谱预处理方式,利用偏最小二乘(Partial Least-Square,PLS)方法进行建模分析。试验结果表明,使用PP-YOLO目标检测算法处理图像和计算苹果位置,其识别速度为38帧/s,极大地提高了检测速度。使用归一化光谱比值法(Normalized Spectral Ratio,NSR)作为预处理算法的糖度建模结果较佳。采用NSR+CARS(Competitive Adaptive Reweighted Sampling,竞争性自适应重加权算法)作为机器手的动态光谱模型效果较佳,该动态光谱模型相关系数Rv为0.9589,验证均方根误差RMSEV(Root Mean Squared Error of Validation)为0.4627%,与静态下建立的模型相比,机器手在动态状态下采集光谱对所建立的预测模型的预测效果影响较小。对整体机器手系统进行了试验验证,机器手在工作时能够无损伤地抓取苹果,给出果径大小、着色度、糖度3个检测指标并依据指标自动划分等级,然后依据等级信息分级。随后测定了3个指标的实测值与预测值进行分析,果径大小的预测相关系数为0.9772,均方根误差为1.6315 mm;着色度的预测相关系数为0.9674,均方根误差为5.9734%;糖度的预测相关系数为0.9643,均方根误差为0.5048%,预测结果与真实值均具有较强的线性关系和较低的预测误差,机器手系统分级正确率为95%,完成一颗苹果的定位、抓取、检测、分级和放置的时间约为5.2 s,具有较好的工作可靠性,研究结果可为苹果多品质指标的高效检测提供参考。

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分