咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Synthetic Data Generation and ... 收藏

Synthetic Data Generation and Shuffled Multi-Round Training Based Offline Handwritten Mathematical Expression Recognition

作     者:Lan-Fang Dong Han-Chao Liu Xin-Ming Zhang 董兰芳;刘汉超;张信明

作者机构:School of Computer Science and TechnologyUniversity of Science and Technology of ChinaHefei 230022China 

出 版 物:《Journal of Computer Science & Technology》 (计算机科学技术学报(英文版))

年 卷 期:2022年第37卷第6期

页      面:1427-1443页

核心收录:

学科分类:08[工学] 0835[工学-软件工程] 081202[工学-计算机软件与理论] 0812[工学-计算机科学与技术(可授工学、理学学位)] 

基  金:the National Key Research and Development Program of China No.2020YFB1313602 

主  题:handwritten mathematical expression recognition offline synthetic data generation training strategy 

摘      要:Offline handwritten mathematical expression recognition is a challenging optical character recognition(OCR)task due to various ambiguities of handwritten symbols and complicated two-dimensional *** work in this area usually constructs deeper and deeper neural networks trained with end-to-end approaches to improve the ***,the higher the complexity of the network,the more the computing resources and time *** improve the performance without more computing requirements,we concentrate on the training data and the training strategy in this *** propose a data augmentation method which can generate synthetic samples with new LaTeX notations by only using the official training data of ***,we propose a novel training strategy called Shuffled Multi-Round Training(SMRT)to regularize the *** the generated data and the shuffled multi-round training strategy,we achieve the state-of-the-art result in expression accuracy,i.e.,59.74%and 61.57%on CROHME 2014 and 2016,respectively,by using attention-based encoder-decoder models for offline handwritten mathematical expression recognition.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分