Long-Time Behaviour of the Solutions for the Multidimensional Kolmogorov-Spieqel-Sivashinsky Equation
Long-Time Behaviour of the Solutions for the Multidimensional Kolmogorov-Spieqel-Sivashinsky Equation作者机构:Institute of Applied Physics and Computational Mathematics Beijing P. R. China
出 版 物:《Acta Mathematica Sinica,English Series》 (数学学报(英文版))
年 卷 期:2002年第18卷第3期
页 面:579-596页
核心收录:
学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学]
主 题:Global solution Approximate inertial manifold Gevrey class regularity Kolmogorov-Spiegel-Sivashinsky equation
摘 要:In this paper, we study the existence and long-time behaviour of the solutions for the multidimensional Kolmogorov-Spiegel-Sivashinsky equation. We first show the existence of the global solution for this equation, and then prove the existence of the global attractor and establish the esti- mates of the upper bounds of Hausdorff and fractal dimensions for the attractor. We also obtain the Gevrey class regularity for the solutions and construct an approximate inertial manifold for the system.