咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >轻量级高分辨率人体姿态估计研究 收藏

轻量级高分辨率人体姿态估计研究

Lightweight and High-Resolution Human Pose Estimation Method

作     者:渠涵冰 贾振堂 Qu Hanbing;Jia Zhentang

作者机构:上海电力大学电子与信息工程学院上海200090 

出 版 物:《激光与光电子学进展》 (Laser & Optoelectronics Progress)

年 卷 期:2022年第59卷第18期

页      面:119-126页

核心收录:

学科分类:1305[艺术学-设计学(可授艺术学、工学学位)] 12[管理学] 13[艺术学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 081104[工学-模式识别与智能系统] 08[工学] 0804[工学-仪器科学与技术] 0835[工学-软件工程] 081101[工学-控制理论与控制工程] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)] 

基  金:国家自然科学基金青年科学基金(61401269) 

主  题:图像处理 人体姿态估计 高分辨率表示 多尺度融合 轻量化 改进稠密连接网络 

摘      要:人体姿态估计通常使用高分辨率表示的方法来实现关键点的检测,但网络参数量较大,运算较为复杂。基于此,提出了一种轻量级高分辨率人体姿态估计算法。首先,使用稠密连接网络(DenseNet)并进行轻量化改进,提出密集连接层,使得各层之间连接更加紧密,从而降低网络的运算参数,优化网络的运算速度;其次,在降低参数且精度保持不变的情况下,在多尺度融合阶段使用上采样和反卷积模块结合的融合方式,使得输出的特征信息更加丰富,检测结果更加准确;最后,利用COCO 2017验证数据集及MPII数据集进行验证。实验结果表明,在保证准确率的情况下与其他人体姿态估计算法相比,所提算法的平均精度为74.8%,运算参数减少了63.8%,网络运算复杂度缩小了8.5%,同时也到达了实时性的效果。

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分