咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Deep active sampling with self... 收藏

Deep active sampling with self-supervised learning

作     者:Haochen SHI Hui ZHOU Haochen SHI;Hui ZHOU

作者机构:College of Electronic and Information EngineeringNanjing University of Aeronautics and AstronauticsNanjing 211106China College of Computer Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjing 211106China 

出 版 物:《Frontiers of Computer Science》 (中国计算机科学前沿(英文版))

年 卷 期:2023年第17卷第4期

页      面:221-223页

核心收录:

学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 081104[工学-模式识别与智能系统] 08[工学] 0835[工学-软件工程] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)] 

主  题:tried learning overcome 

摘      要:1 ***,some research efforts[1]have tried to combine selfsupervised learning and active learning to reduce the cost of labeling ***,this method is difficult to effectively improve the model performance because it does not consider the feature representation performance of the examples on the pretext *** order to overcome this shortcoming,we propose a deep active sampling framework with self-supervised representation learning.

读者评论 与其他读者分享你的观点