Deep active sampling with self-supervised learning
作者机构:College of Electronic and Information EngineeringNanjing University of Aeronautics and AstronauticsNanjing 211106China College of Computer Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjing 211106China
出 版 物:《Frontiers of Computer Science》 (中国计算机科学前沿(英文版))
年 卷 期:2023年第17卷第4期
页 面:221-223页
核心收录:
学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 081104[工学-模式识别与智能系统] 08[工学] 0835[工学-软件工程] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)]
摘 要:1 ***,some research efforts[1]have tried to combine selfsupervised learning and active learning to reduce the cost of labeling ***,this method is difficult to effectively improve the model performance because it does not consider the feature representation performance of the examples on the pretext *** order to overcome this shortcoming,we propose a deep active sampling framework with self-supervised representation learning.