Local Dispersive and Strichartz Estimates for the Schr?dinger Operator on the Heisenberg Group
作者机构:CNRS&Sorbonne Universite Laboratoire Jacques-Louis Lions(LJLL)UMR 75984Place Jussieu 75005 ParisFrance DMAEcole Normale SuperieureCNRSPSL Research University75005 ParisFrance UFR de MathematiquesUniversitéde Paris75013 ParisFrance
出 版 物:《Communications in Mathematical Research》 (数学研究通讯(英文版))
年 卷 期:2023年第39卷第1期
页 面:1-35页
核心收录:
学科分类:02[经济学] 0202[经济学-应用经济学] 020208[经济学-统计学] 07[理学] 0714[理学-统计学(可授理学、经济学学位)] 070103[理学-概率论与数理统计] 0701[理学-数学]
主 题:Heisenberg group Schrodinger equation dispersive estimates Strichartz estimates
摘 要:It was proved by Bahouri et al.[9]that the Schrodinger equation on the Heisenberg group H^(d),involving the sublaplacian,is an example of a totally non-dispersive evolution equation:for this reason global dispersive estimates cannot *** paper aims at establishing local dispersive estimates on H^(d) for the linear Schrodinger equation,by a refined study of the Schrodinger ker-nel St on H^(d).The sharpness of these estimates is discussed through several *** approach,based on the explicit formula of the heat kernel on H^(d) derived by Gaveau[19],is achieved by combining complex analysis and Fourier-Heisenberg *** a by-product of our results we establish local Stri-chartz estimates and prove that the kernel St concentrates on quantized hori-zontal hyperplanes of H^(d).