Higher Order Fractional Differentiability for the Stationary Stokes System
Higher Order Fractional Differentiability for the Stationary Stokes System作者机构:School of Mathematical SciencesTianjin Normal UniversityTianjin 300387P.R.China School of Mathematical Sciences and LPMCNankai UniversityTianjin 300071P.R.China School of Mathematical SciencesNankai UniversityTianjin 300071P.R.China
出 版 物:《Acta Mathematica Sinica,English Series》 (数学学报(英文版))
年 卷 期:2023年第39卷第1期
页 面:13-29页
核心收录:
学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学]
基 金:Supported by the National Natural Science Foundation of China(Grant Nos.12071229,12101452) Tianjin Normal University Doctoral Research Project(Grant No.52XB2110)
主 题:Higher order fractional differentiability Stokes system Besov spaces
摘 要:This paper focuses on the higher order fractional differentiability of weak solution pairs to the following nonlinear stationary Stokes system{div A(x-Du)-■π=divF,inΩdivu=0,inΩ.In terms of the difference quotient method,our first result reveals that if F∈B_(p,***)^(β)(Ω,R^(n))for p=2 and 1≤q≤2n/n-2β,then such extra Besov regularity can transfer to the symmetric gradient Du and its pressureπwith no losses under a suitable fractional differentiability assumption on x■A(x,ξ).Furthermore,when the vector field A(x,Du)is simplified to the full gradient■u,we improve the aforementioned Besov regularity for all integrability exponents p and q by establishing a new Campanato-type decay estimates for(■u,π).