A NON-LOCAL DIFFUSION EQUATION FOR NOISE REMOVAL
A NON-LOCAL DIFFUSION EQUATION FOR NOISE REMOVAL作者机构:School of MathematicsHarbin Institute of TechnologyHarbin 15000China School of MathematicsUniversity of California at IrvineIrvine 92697U.S.A.
出 版 物:《Acta Mathematica Scientia》 (数学物理学报(B辑英文版))
年 卷 期:2022年第42卷第5期
页 面:1779-1808页
核心收录:
学科分类:07[理学] 08[工学] 080203[工学-机械设计及理论] 070104[理学-应用数学] 0802[工学-机械工程] 0701[理学-数学]
基 金:partially supported by the National Natural Science Foundation of China(11971131,12171123,11871133,11671111,U1637208,61873071,51476047) the Guangdong Basic and Applied Basic Research Foundation(2020B1515310006) the Natural Sciences Foundation of Heilongjiang Province(LH2021A011) China Postdoctoral Science Foundation(2020M670893)
主 题:image denoising non-local diffusion BV solutions Perona-Malik method
摘 要:In this paper,we propose a new non-local diffusion equation for noise removal,which is derived from the classical Perona-Malik equation(PM equation)and the regularized PM *** the convolution of the image gradient and the gradient,we propose a new diffusion *** to the use of the convolution,the diffusion coefficient is ***,the solution of the new diffusion equation may be discontinuous and belong to the bounded variation space(BV space).By virtue of Young measure method,the existence of a BV solution to the new non-local diffusion equation is *** results illustrate that the new method has some non-local performance and performs better than the original PM and other methods.