咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Four-Order Superconvergent Wea... 收藏

Four-Order Superconvergent Weak Galerkin Methods for the Biharmonic Equation on Triangular Meshes

作     者:Xiu Ye Shangyou Zhang Xiu Ye;Shangyou Zhang

作者机构:Department of MathematicsUniversity of Arkansas at Little RockLittle RockAR72204USA Department of Mathematical SciencesUniversity of DelawareNewarkDE19716USA 

出 版 物:《Communications on Applied Mathematics and Computation》 (应用数学与计算数学学报(英文))

年 卷 期:2023年第5卷第4期

页      面:1323-1338页

核心收录:

学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学] 

主  题:Finite element Weak Hessian Weak Galerkin(WG) Biharmonic equation Triangular mesh 

摘      要:A stabilizer-free weak Galerkin(SFWG)finite element method was introduced and analyzed in Ye and Zhang(SIAM ***.58:2572–2588,2020)for the biharmonic equation,which has an ultra simple finite element *** work is a continuation of our investigation of the SFWG method for the biharmonic *** new SFWG method is highly accurate with a convergence rate of four orders higher than the optimal order of convergence in both the energy norm and the L^(2)norm on triangular *** new method also keeps the formulation that is symmetric,positive definite,and ***-order superconvergence error estimates are proved for the corresponding SFWG finite element solutions in a discrete H^(2)*** of four orders in the L^(2)norm is also derived for k≥3,where k is the degree of the approximation *** postprocessing is proved to lift a P_(k)SFWG solution to a P_(k+4)solution elementwise which converges at the optimal *** examples are tested to verify the theor ies.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分