Trigonometric multiplicative chaos and applications to random distributions
Trigonometric multiplicative chaos and applications to random distributions作者机构:School of Mathematics and StatisticsCentral China Normal UniversityWuhan 430079China LAMFACNRSUMR7352University of PicardieAmiens 80039France CMLAENS-CachanCNRSUniversityof Paris-SaclayParis 91190France
出 版 物:《Science China Mathematics》 (中国科学:数学(英文版))
年 卷 期:2023年第66卷第1期
页 面:3-36页
核心收录:
学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学]
基 金:supported by National Natural Science Foundation of China (Grant No.11971192)
主 题:multiplicative chaos random Fourier series Hausdorff dimension Riesz potential
摘 要:The random trigonometric series∑∞n=1ρn cos(nt+ωn)on the circle T are studied under the conditions∑|ρn|^(2)=∞andρn→0,where{ωn}are independent and uniformly distributed random variables on *** are almost surely not Fourier-Stieltjes series but determine *** leads us to develop the theory of trigonometric multiplicative chaos,which produces a class of random *** kernel and the image of chaotic operators are fully studied and the dimensions of chaotic measures are exactly *** behavior of the partial sums of the above series is proved to be *** theory holds on the torus Tdof dimension d≥1.