Semi-Discrete and Fully Discrete Weak Galerkin Finite Element Methods for a Quasistatic Maxwell Viscoelastic Model
作者机构:School of MathematicsSichuan UniversityChengdu 610064China Mathematics Department of Jinjiang CollegeSichuan UniversityPengshan 620860China
出 版 物:《Numerical Mathematics(Theory,Methods and Applications)》 (高等学校计算数学学报(英文版))
年 卷 期:2023年第16卷第1期
页 面:79-110页
核心收录:
学科分类:07[理学] 070102[理学-计算数学] 0701[理学-数学]
基 金:This work was supported by the National Natural Science Foundation of China(Grant No.12171340)
主 题:Quasistatic Maxwell viscoelastic model weak Galerkin method semi-discrete scheme fully discrete scheme error estimate
摘 要:This paper considers weak Galerkin finite element approximations on polygonal/polyhedral meshes for a quasistatic Maxwell viscoelastic *** spatial discretization uses piecewise polynomials of degree k(k≥1)for the stress approximation,degree k+1 for the velocity approximation,and degree k for the numerical trace of velocity on the inter-element *** temporal discretization in the fully discrete method adopts a backward Euler difference *** show the existence and uniqueness of the semi-discrete and fully discrete solutions,and derive optimal a priori error *** examples are provided to support the theoretical analysis.