咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Water Wave Optimization with D... 收藏

Water Wave Optimization with Deep Learning Driven Smart Grid Stability Prediction

作     者:Anwer Mustafa Hilal Aisha Hassan Abdalla Hashim Heba G.Mohamed Mohammad Alamgeer Mohamed K.Nour Anas Abdelrahman Abdelwahed Motwakel 

作者机构:Department of Electrical and Computer EngineeringInternational Islamic University MalaysiaKuala Lumpur53100Malaysia Department of Computer and Self DevelopmentPreparatory Year DeanshipPrince Sattam Bin Abdulaziz UniversityAlKharjSaudi Arabia Department of Electrical EngineeringCollege of EngineeringPrincess Nourah Bint Abdulrahman UniversityP.O.Box 84428Riyadh11671Saudi Arabia Department of Information SystemsCollege of Science&Art at MahayilKing Khalid UniversitySaudi Arabia Department of Computer Science and BioinformaticsSinghania UniversityPacheri BariJhnujhunuRajasthanIndia Department of Computer SciencesCollege of Computing and Information SystemUmm Al-Qura UniversitySaudi Arabia Department of Mechanical EngineeringFaculty of Engineering&TechnologyFuture University in EgyptNew Cairo11835Egypt 

出 版 物:《Computers, Materials & Continua》 (计算机、材料和连续体(英文))

年 卷 期:2022年第73卷第12期

页      面:6019-6035页

核心收录:

学科分类:0831[工学-生物医学工程(可授工学、理学、医学学位)] 0808[工学-电气工程] 0809[工学-电子科学与技术(可授工学、理学学位)] 08[工学] 0805[工学-材料科学与工程(可授工学、理学学位)] 0701[理学-数学] 0812[工学-计算机科学与技术(可授工学、理学学位)] 0801[工学-力学(可授工学、理学学位)] 

基  金:The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through Large Groups Project under grant number(180/43) Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2022R140) Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code:(22UQU4310373DSR23) 

主  题:Smart grid stability prediction deep learning energy systems machine learning metaheursitics 

摘      要:Smart Grid(SG)technologies enable the acquisition of huge volumes of high dimension and multi-class data related to electric power grid operations through the integration of advanced metering infrastructures,control systems,and communication *** SGs,user demand data is gathered and examined over the present supply criteria whereas the expenses are then informed to the clients so that they can decide about electricity *** the entire procedure is valued on the basis of time,it is essential to perform adaptive estimation of the SG’s *** advancements inMachine Learning(ML)andDeep Learning(DL)models enable the designing of effective stability prediction models in *** this background,the current study introduces a novel Water Wave Optimization with Optimal Deep Learning Driven Smart Grid Stability Prediction(WWOODL-SGSP)*** aim of the presented WWOODL-SGSP model is to predict the stability level of SGs in a proficient *** attain this,the proposed WWOODL-SGSP model initially applies normalization process to scale the data to a uniform ***,WWO algorithm is applied to choose an optimal subset of features from the pre-processed ***,Deep Belief Network(DBN)model is followed to predict the stability level of ***,Slime Mold Algorithm(SMA)is exploited to fine tune the hyperparameters involved in DBN *** order to validate the enhanced performance of the proposedWWOODL-SGSP model,a wide range of experimental analyses was *** simulation results confirmthe enhanced predictive results of WWOODL-SGSP model over other recent approaches.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分