咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Optimal Logistics Activities B... 收藏

Optimal Logistics Activities Based Deep Learning Enabled Traffic Flow Prediction Model

作     者:Basim Aljabhan Mahmoud Ragab Sultanah M.Alshammari Abdullah S.Al-Malaise Al-Ghamdi 

作者机构:Ports and Maritime Transportation DepartmentFaculty of Maritime StudiesKing Abdulaziz UniversityJeddah21589Saudi Arabia Information Technology DepartmentFaculty of Computing and Information TechnologyKing Abdulaziz UniversityJeddah21589Saudi Arabia Department of MathematicsFaculty of ScienceAl-Azhar UniversityNaser City11884CairoEgypt Center of Excellence in Smart Environment ResearchKing Abdulaziz UniversityJeddah21589Saudi Arabia Department of Computer ScienceFaculty of Computing and Information TechnologyKing Abdulaziz UniversityJeddah21589Saudi Arabia Information Systems DepartmentFaculty of Computing and Information TechnologyKing Abdulaziz UniversityJeddah21589Saudi Arabia S 7Information Systems DepartmentHECI SchoolDar Alhekma UniversityJeddahSaudi Arabia 

出 版 物:《Computers, Materials & Continua》 (计算机、材料和连续体(英文))

年 卷 期:2022年第73卷第12期

页      面:5269-5282页

核心收录:

学科分类:0809[工学-电子科学与技术(可授工学、理学学位)] 08[工学] 

基  金:This project was funded by the Deanship of Scientific Research(DSR)at King Abdulaziz University(KAU) Jeddah Saudi Arabia under grant no.(G:665-980-1441) 

主  题:Traffic flow prediction deep learning artificial fish swarm algorithm mass gatherings statistical analysis logistics 

摘      要:Traffic flow prediction becomes an essential process for intelligent transportation systems(ITS).Though traffic sensor devices are manually controllable,traffic flow data with distinct length,uneven sampling,and missing data finds challenging for effective *** traffic data has been considerably increased in recent times which cannot be handled by traditional mathematical *** recent developments of statistic and deep learning(DL)models pave a way for the effectual design of traffic flow prediction(TFP)*** this view,this study designs optimal attentionbased deep learning with statistical analysis for TFP(OADLSA-TFP)*** presentedOADLSA-TFP model intends to effectually forecast the level of traffic in the *** attain this,the OADLSA-TFP model employs attention-based bidirectional long short-term memory(ABLSTM)model for predicting traffic *** order to enhance the performance of the ABLSTM model,the hyperparameter optimization process is performed using artificial fish swarm algorithm(AFSA).A wide-ranging experimental analysis is carried out on benchmark dataset and the obtained values reported the enhancements of the OADLSA-TFP model over the recent approaches mean square error(MSE),root mean square error(RMSE),and mean absolute percentage error(MAPE)of 120.342%,10.970%,and 8.146%respectively.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分