视频监控下利用记忆力增强自编码的行人异常行为检测
Memory-augmented deep autoencoder model for pedestrian abnormal behavior detection in video surveillance作者机构:济宁学院数学与计算机应用技术学院山东曲阜273155
出 版 物:《红外与激光工程》 (Infrared and Laser Engineering)
年 卷 期:2022年第51卷第6期
页 面:358-364页
核心收录:
学科分类:1305[艺术学-设计学(可授艺术学、工学学位)] 13[艺术学] 081104[工学-模式识别与智能系统] 08[工学] 0804[工学-仪器科学与技术] 081101[工学-控制理论与控制工程] 0811[工学-控制科学与工程]
主 题:异常事件检测 视频监控 自编码网络 记忆力增强 深度学习
摘 要:随着视频监控数据的快速增长,对大规模视频数据的自动异常检测的需求越来越大,基于深度自编码器重构误差检测方法已经被广泛探讨。但是,有时自编码器“泛化得很好,能够很好地重建异常并导致漏检。为了解决这个问题,提出了采用记忆力模块来增强自动编码器,称为记忆力增强自编码(Memory-augmented autoencoder, Memory AE)方法。给定输入,Memory AE首先从编码器获取编码,然后将其用作查询以检索最相关的记忆项来进行重建。在训练阶段,记忆内容被更新以表示正常数据的原型元素。在测试阶段,将学习到的记忆元素固定下来,从正常数据的几个选定的记忆记录中获得重建,因此重建将趋向于接近正常样本。因此,将加强对异常的重构误差以进行异常检测。对两个公共视频异常检测数据集,即Avenue数据集和ShanghaiTech数据集的研究证明了所提出方法的有效性。