ON THE REGULARITY CRITERIA OF THE 3D NAVIER-STOKES EQUATIONS IN CRITICAL SPACES
ON THE REGULARITY CRITERIA OF THE 3D NAVIER-STOKES EQUATIONS IN CRITICAL SPACES作者机构:School of Mathematical Sciences Anhui University Department of Mathematics University of Mostaganem School of Engineering Sciences University of Southampton
出 版 物:《Acta Mathematica Scientia》 (数学物理学报(B辑英文版))
年 卷 期:2011年第31卷第2期
页 面:591-600页
核心收录:
学科分类:080704[工学-流体机械及工程] 07[理学] 080103[工学-流体力学] 08[工学] 0807[工学-动力工程及工程热物理] 070104[理学-应用数学] 0701[理学-数学] 0801[工学-力学(可授工学、理学学位)]
基 金:supported by the NSF of China (10801001) NSF of Anhui Province (11040606M02) the 211 Project of Anhui University (KJTD002B, KJJQ005)
主 题:Regularity criteria Navier-Stokes equations
摘 要:Regularity criteria of Leray-Hopf weak solutions to the three-dimensional Navier-Stokes equations in some critical spaces such as Lorentz space, Morrey space and multiplier space are derived in terms of two partial derivatives, θ1u1, θ2u2, of velocity fields.