The Simultaneous Fractional Dimension of Graph Families
The Simultaneous Fractional Dimension of Graph Families作者机构:Texas A&M University at GalvestonGalvestonTX 77553USA University of MariborFEECS Smetanova 172000 MariborSlovenia
出 版 物:《Acta Mathematica Sinica,English Series》 (数学学报(英文版))
年 卷 期:2023年第39卷第8期
页 面:1425-1441页
核心收录:
学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学]
基 金:Supported by US-Slovenia Bilateral Collaboration Grant(BI-US/19-21-077)
主 题:Metric dimension fractional metric dimension resolving function simultaneous(metric)dimension simultaneous fractional(metric)dimension
摘 要:For a connected graph G with vertex set V,let RG{x,y}={z∈V:dG(x,z)≠dG(y,z)}for any distinct x,y∈V,where dG(u,w)denotes the length of a shortest uw-path in *** a real-valued function g defined on V,let g(V)=∑s∈V g(s).Let C={G_(1),G_(2),...,G_(k)}be a family of connected graphs having a common vertex set V,where k≥2 and|V|≥3.A real-valued function h:V→[0,1]is a simultaneous resolving function of C if h(RG{x,y})≥1 for any distinct vertices x,y∈V and for every graph G∈*** simultaneous fractional dimension,Sdf(C),of C is min{h(V):h is a simultaneous resolving function of C}.In this paper,we initiate the study of the simultaneous fractional dimension of a graph *** obtain max1≤i≤k{dimf(Gi)}≤Sd_(f)(C)≤min{∑k i=1 dimf(Gi),|V|/2},where both bounds are *** characterize C satisfying Sdf(C)=1,examine C satisfying Sdf(C)=|V|/2,and determine Sdf(C)when C is a family of vertex-transitive *** also obtain some results on the simultaneous fractional dimension of a graph and its complement.