STRONG CONVERGENCE OF THE EULER-MARUYAMA METHOD FOR A CLASS OF STOCHASTIC VOLTERRA INTEGRAL EQUATIONS
作者机构:School of Mathematical SciencesHeilongjiang UniversityHarbin 150080China
出 版 物:《Journal of Computational Mathematics》 (计算数学(英文))
年 卷 期:2022年第40卷第4期
页 面:607-623页
核心收录:
学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学]
基 金:supported by the Heilongjiang Provincial Key Laboratory of the Theory and Computation of Complex Systems and Basic Scientific Research in Colleges and Universities of Heilongjiang Province(SFP of Heilongjiang University No.KJCX201924)
主 题:Strong convergence Stochastic Volterra integral equations Euler-Maruyama method Lipschitz condition
摘 要:In this paper,we consider the Euler-Maruyama method for a class of stochastic Volterra integral equations(SVIEs).It is known that the strong convergence order of the EulerMaruyama method is ***,the strong superconvergence order 1 can be obtained for a class of SVIEs if the kernelsσi(t,t)=0 for i=1 and 2;otherwise,the strong convergence order is ***,the theoretical results are illustrated by some numerical examples.