咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Outlier Detection via a Block ... 收藏

Outlier Detection via a Block Diagonal Product Estimator

Outlier Detection via a Block Diagonal Product Estimator

作     者:LI Chikun JIN Baisuo LI Chikun;JIN Baisuo

作者机构:School of ManagementUniversity of Science and Technology of ChinaHefei 230026China 

出 版 物:《Journal of Systems Science & Complexity》 (系统科学与复杂性学报(英文版))

年 卷 期:2022年第35卷第5期

页      面:1929-1943页

核心收录:

学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 

基  金:supported by the National Natural Science Foundation of China under Grant Nos.71873128 and 72111530199 

主  题:Block diagonal high dimension minimum covariance determinant estimator 

摘      要:Outlier detection is a fundamental topic in robust *** outlier detection methods try to find a clean subset of given size,which is used to estimate the location vector and scatter matrix,and the outliers can be flagged by the Mahalanobis ***,methods such as the minimum covariance determinant approach cannot be applied directly to high-dimensional data,especially when the dimension of the sample is greater than the sample size.A novel fast detection procedure based on a block diagonal partition is proposed,and the asymptotic distribution of the modified Mahalanobis distance is *** authors verify the specificity and sensitivity of this procedure by simulation and real data analysis in high-dimensional settings.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分