UNIFORM BLOWUP PROFILES FOR DIFFUSION EQUATIONS WITH NONLOCAL SOURCE AND NONLOCAL BOUNDARY1
UNIFORM BLOWUP PROFILES FOR DIFFUSION EQUATIONS WITH NONLOCAL SOURCE AND NONLOCAL BOUNDARY作者机构:SchoolofMathematicalScienceYangzhouUniversityYangzhou225002China
出 版 物:《Acta Mathematica Scientia》 (数学物理学报(B辑英文版))
年 卷 期:2004年第24卷第3期
页 面:443-450页
核心收录:
学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学]
基 金:国家自然科学基金(10171088) SRF for Rocs, SEM
主 题:Blowup nonlocal source nonlocal boundary condition 35K50 35B40
摘 要:Long time behavior of solutions to semilinear parabolic equations with nonlo-cal nonlinear source ut-Δu=∫Ωg(u)dx in Ω×(0, T) and with nonlocal boundary con-dition u(x, t)=∫Ωf(x, y)u(y,t)dy on эΩ×(0, T) is studied. The authors establish local existence, global existence and nonexistence of solutions and discuss the blowup properties of solutions. Moveover, they derive the uniform blowup estimates for g(s)= s^p(p1) and g(s)=e^э under the assumption ∫Ωf(x,y)dy1 for x∈эΩ.