Grain Boundaries Engineering of Hollow Copper Nanoparticles Enables Highly Efficient Ammonia Electrosynthesis from Nitrate
作者机构:College of Chemistry and Environmental EngineeringShenzhen UniversityShenzhenGuangdong 518060 Department of Chemical and Biological Engineering and Energy InstituteThe Hong Kong University of Science and TechnologyKowloonHong Kong 999077
出 版 物:《CCS Chemistry》 (中国化学会会刊(英文))
年 卷 期:2022年第4卷第6期
页 面:2053-2064页
学科分类:07[理学] 070205[理学-凝聚态物理] 08[工学] 080501[工学-材料物理与化学] 0805[工学-材料科学与工程(可授工学、理学学位)] 0702[理学-物理学]
基 金:the National Natural Science Foundation(NNSF)of China(nos.21975162 and 51902208) Shenzhen Government’s Plan of Science and Technology(nos.JCYJ20200109105803806 and JCYJ20190808142219049)
主 题:grain boundaries hollow structures artificial ammonia production nitrate reduction reaction Haber-Bosch route
摘 要:Electrochemical nitrate reduction reaction(NO_(3)−RR)is an ideal route to produce ammonia(NH_(3))under ambient *** a markedly improved NH3 production rate has been achieved on the NO_(3)−RR compared with the nitrogen reduction reaction(NRR),the NH_(3) production rate of NO_(3)−RR is still well below the industrial Haber-Bosch route due to the lack of robust electrocatalysts for yielding high current densitieswith concurrently good suppression of hydrogen evolution reaction(HER).Herein,we describe an in situ electrochemical strategy for the synthesis of hollow carbon-coated Cu nanoparticles(NPs)(HSCu@C)with abundant grain boundaries(HSCu-AGB@C)for highly efficient NO_(3)−RR in both alkaline and neutral ***,in alkaline media,the HSCu-AGB@C can achieve a maximum NH3 Faradaic efficiency of 94.2% with an ultrahigh NH_(3) rate of 487.8 mmol g^(−1) cat h^(−1) at−0.2 V versus a reversible hydrogen electrode,more than 2.4-fold of the rate obtained in the *** theoretic computations and experimental results uncover that the grain boundaries play the key to improve the NO_(3)−RR ***,the industrial-scale NH_(3) production ratemay open exciting opportunities for the practical electrosynthesis NH_(3) under ambient conditions.