咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >采用邻域决策分辨率的特征选择算法 收藏

采用邻域决策分辨率的特征选择算法

Feature Selection Algorithm Based on Neighborhood Decision Distinguishing Rate

作     者:诸文智 司刚全 张彦斌 ZHU Wenzhi;SI Gangquan;ZHANG Yanbin

作者机构:西安交通大学电气工程学院西安710049 

出 版 物:《西安交通大学学报》 (Journal of Xi'an Jiaotong University)

年 卷 期:2013年第47卷第2期

页      面:20-27页

核心收录:

学科分类:0810[工学-信息与通信工程] 08[工学] 080401[工学-精密仪器及机械] 0804[工学-仪器科学与技术] 080402[工学-测试计量技术及仪器] 0835[工学-软件工程] 081002[工学-信号与信息处理] 

基  金:国家自然科学基金资助项目(61005058) 教育部高等学校博士学科点专项科研基金资助项目(20090201110019 20070698059) 

主  题:特征选择 邻域粗糙集 邻域决策分辨率 

摘      要:针对目前基于粗糙集模型的特征选择算法无法直接应用于数值型数据、必须经过离散化过程而造成决策信息丢失的问题,提出了一种基于邻域决策分辨率的特征选择算法。该算法根据邻域信息粒中决策分布与其分类能力间的关系,提出了邻域决策确定性(Nc)来衡量单个信息粒的决策分辨能力;并根据特征向量空间上所有信息粒所具有的Nc累加值,定义了邻域决策分辨率作为特征子集上决策可分辨性的量度,从而将名义型和数值型数据统一在同一特征选择算法框架下。仿真实验和实际应用的结果表明,该算法性能优于目前主流基于邻域粗糙集的特征选择方法。

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分