Numerical analysis of ultimate strength of concrete filled steel tubular arch bridges
Numerical analysis of ultimate strength of concrete filled steel tubular arch bridges作者机构:Department of Civil Engineering Zhejiang University Department of Civil Engineering Ningbo University Centre for Civil & Construction Engineering University of Manchester Manchester
出 版 物:《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 (浙江大学学报(英文版)A辑(应用物理与工程))
年 卷 期:2005年第6卷第8期
页 面:859-868页
核心收录:
学科分类:0810[工学-信息与通信工程] 08[工学] 081402[工学-结构工程] 081304[工学-建筑技术科学] 0805[工学-材料科学与工程(可授工学、理学学位)] 0813[工学-建筑学] 0814[工学-土木工程] 0812[工学-计算机科学与技术(可授工学、理学学位)]
主 题:Concrete Filled Steel Tubular (CFST) Confined concrete Stress-strain relationship Ultimate strength
摘 要:The calculation of ultimate bearing capacity is a significant issue in the design of Concrete Filled Steel Tubular (CFST) arch bridges. Based on the space beam theory, this paper provides a calculation method for determining the ultimate strength of CFST structures. The accuracy of this method and the applicability of the stress-strain relationships were validated by comparing different existing confined concrete uniaxial constitutive relationships and experimental results. Comparison of these results indicated that this method using the confined concrete uniaxial stress-strain relationships can be used to calculate the ultimate strength and CFST behavior with satisfactory accuracy. The calculation results are stable and seldom affected by concrete con-stitutive relationships. The method is therefore valuable in the practice of engineering design. Finally, the ultimate strength of an arch bridge with span of 330 m was investigated by the proposed method and the nonlinear behavior was discussed.