咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >基于VMD和DBN的非线性结构模型参数识别 收藏

基于VMD和DBN的非线性结构模型参数识别

Parametric recognition of nonlinear structural model based on VMD and DBN

作     者:莫叶 王佐才 丁雅杰 袁子青 MO Ye;WANG Zuocai;DING Yajie;YUAN Ziqing

作者机构:合肥工业大学土木与水利工程学院合肥230009 安徽省土木工程防灾减灾工程技术研究中心合肥230009 

出 版 物:《振动与冲击》 (Journal of Vibration and Shock)

年 卷 期:2022年第41卷第9期

页      面:136-143页

核心收录:

学科分类:08[工学] 080101[工学-一般力学与力学基础] 0801[工学-力学(可授工学、理学学位)] 

基  金:国家自然科学基金优秀青年科学基金(51922036) 安徽省重点研发计划(1804a0802204) 中央高校基本科研业务费专项资金(JZ2020HGPB0117) 

主  题:非线性结构模型 参数识别 变分模态分解(VMD) 深度置信网络(DBN) 振动响应 瞬时参数 

摘      要:为解决现有的非线性结构模型参数识别方法面临优化过程复杂的问题,提出一种基于变分模态分解(variational mode decomposition,VMD)和深度置信网络(deep belief network,DBN)的非线性结构模型参数识别方法。首先,利用VMD和希尔伯特变换(Hilbert transform,HT)识别振动响应的瞬时参数;将瞬时参数进行主成分分析后作为输入,非线性模型参数作为输出;然后,利用DBN拟合两者之间的非线性映射关系;最后,将实测振动响应的瞬时参数进行主成分分析,输入训练好的DBN可直接识别修正后的非线性模型参数。通过对两个不同非线性类型的双自由度模型和一个复杂框架模型在地震作用下的数值模拟,与高压输电结构的振动台试验,验证了该方法的有效性。数值与试验结果表明,所提方法具有较高的计算效率和良好的抗噪性。

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分