咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Two-Dimensional Projection-Bas... 收藏

Two-Dimensional Projection-Based Wireless Intrusion Classification Using Lightweight EfficientNet

作     者:Muhamad Erza Aminanto Ibnu Rifqi Purbomukti Harry Chandra Kwangjo Kim 

作者机构:School of Strategic and Global StudiesUniversitas IndonesiaDepok16424Indonesia National Institute of Information and Communications Technology(NICT)Koganei184-8795Japan Department of Electrical Engineering and Information TechnologyUniversitas Gadjah MadaYogyakarta55281Indonesia School of ComputingKorea Advanced Institute of Science and Technology(KAIST)Daejeon34141Korea 

出 版 物:《Computers, Materials & Continua》 (计算机、材料和连续体(英文))

年 卷 期:2022年第72卷第9期

页      面:5301-5314页

核心收录:

学科分类:0809[工学-电子科学与技术(可授工学、理学学位)] 08[工学] 

基  金:Universitas Indonesia  UI 

主  题:Intrusion detection impersonation attack convolutional neural network anomaly detection 

摘      要:Internet of Things(IoT)networks leverage wireless communication protocols,which adversaries can *** attacks,injection attacks,and flooding are several examples of different attacks existing in Wi-Fi *** Detection System(IDS)became one solution to distinguish those attacks from benign *** learning techniques have been intensively utilized to classify the ***,the main issue of utilizing deep learning models is projecting the data,notably tabular data,into an *** study proposes a novel projection from wireless network attacks data into a grid-based image for feeding one of the Convolutional Neural Network(CNN)models,*** define the particular sequence of placing the attribute values in a grid that would be captured as an *** the most important subset of attributes and EfficientNet,we aim for an accurate and lightweight IDS module deployed in IoT *** examine the proposed model using the Wi-Fi attacks dataset,called the AWID2 *** achieve the best performance by a 99.91%F1 score and 0.11%false-positive *** addition,our proposed model achieved comparable results with other statistical machine learning models,which shows that our proposed model successfully exploited the spatial information of tabular data to maintain detection accuracy.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分