Objective Phenotyping of Root System Architecture Using Image Augmentation and Machine Learning in Alfalfa (Medicago sativa L.)
作者机构:USDA-ARSPlant Science Research Unit1991 Upper Buford CircleSt.PaulMN 55108USA Biosciences Division and Center for Bioenergy InnovationOak Ridge National LaboratoryOak RidgeTN 37830USA Noble Research InstituteLLCArdmoreOK 73401USA Department of Agronomy and Plant GeneticsUniversity of Minnesota1991 Upper Buford CircleSt.PaulMN 55108USA Department of Animal ScienceUniversity of California2251 Meyer HallOne Shields Ave.DavisCA 95616USA
出 版 物:《Plant Phenomics》 (植物表型组学(英文))
年 卷 期:2022年第4卷第1期
页 面:342-356页
核心收录:
学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 081104[工学-模式识别与智能系统] 08[工学] 080203[工学-机械设计及理论] 0835[工学-软件工程] 0802[工学-机械工程] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)]
基 金:U.S. Department of Energy Bioenergy Research Center U.S. Department of Energy, USDOE Office of Science, SC, (DE-AC05-00OR22725) Office of Science, SC Biological and Environmental Research, BER Agricultural Research Service, ARS Center for Bioenergy Innovation, CBI Minnesota Agricultural Experiment Station, MAES
摘 要:Active breeding programs specifically for root system architecture(RSA)phenotypes remain rare;however,breeding for branch and taproot types in the perennial crop alfalfa is *** in this and other crops for active RSA breeding has mostly used visual scoring of specific traits or subjective classification into different root *** image-based methods have been developed,translation to applied breeding is limited.