Concavity of minimal L^(2) integrals related to multiplier ideal sheaves on weakly pseudoconvex Kahler manifolds
Concavity of minimal L~2 integrals related to multiplier ideal sheaves on weakly pseudoconvex K?hler manifolds作者机构:School of Mathematical SciencesPeking UniversityBeijing 100871China Institute of MathematicsAcademy of Mathematics and Systems ScienceChinese Academy of SciencesBeijing 100190China
出 版 物:《Science China Mathematics》 (中国科学:数学(英文版))
年 卷 期:2022年第65卷第5期
页 面:887-932页
核心收录:
学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学]
基 金:supported by National Natural Science Foundation of China (Grant Nos. 11825101 11522101 and 11431013)
主 题:multiplier ideal sheaf plurisubharmonic function weakly pseudoconvex Kahler manifold sublevel set
摘 要:In this paper,we present the concavity of the minimal L^(2)integrals related to multiplier ideal sheaves on the weakly pseudoconvex Kahler manifolds,which implies the sharp effectiveness results of the strong openness conjecture and a conjecture posed by Demailly and Kollar(2001)on weakly pseudoconvex Kahler *** obtain the relation between the concavity and the L^(2)extension theorem.