基于Bayes判别法的脑电图数据分析的研究
Study on Bayes Analysis of EEG Data作者机构:大连科技学院大连116028
出 版 物:《价值工程》 (Value Engineering)
年 卷 期:2015年第34卷第13期
页 面:169-170页
学科分类:08[工学] 0835[工学-软件工程] 081202[工学-计算机软件与理论] 0812[工学-计算机科学与技术(可授工学、理学学位)]
摘 要:目的:本文通过对客观记录的受试者脑电图数据进行Bayes判别分析,判断其能否应用于脑电数据特征提取和分类决策。为脑电图研究的其它分析做基础分析。方法:根据α波的强弱不同将21导电极分为四类,分别对63例正常状态下受试者21导联电极的脑电图数据进行Bayes判别分析,并利用误判率回代估计法检验判别准确率。数据处理和统计分析采用独立设计的脑电图分析工具箱和Bayes判别分析程序。结果:表明对63例正常状态下受试者的脑电图数据进行Bayes判别分析,预测各电极分类准确率75.4%。结论:Bayes判别法预测准确率较高,脑电特征(主要为α波)提取较为准确,能较好的应用于脑电数据特征提取和分类决策中,从而辅助脑电图的检查和定量分析,为脑电图的检验提供有效的分析手段。