咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >CrysXPP:An explainable propert... 收藏

CrysXPP:An explainable property predictor for crystalline materials

作     者:Kishalay Das Bidisha Samanta Pawan Goyal Seung-Cheol Lee Satadeep Bhattacharjee Niloy Ganguly 

作者机构:Indian Institute of Technology KharagpurKharagpurIndia Indo Korea Science and Technology CenterBangaloreIndia Leibniz University of HannoverHannoverGermany 

出 版 物:《npj Computational Materials》 (计算材料学(英文))

年 卷 期:2022年第8卷第1期

页      面:424-434页

核心收录:

学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学] 

基  金:Projekt DEAL 

主  题:materials. property crystalline 

摘      要:We present a deep-learning framework,CrysXPP,to allow rapid and accurate prediction of electronic,magnetic,and elastic properties of a wide range of *** lowers the need for large property tagged datasets by intelligently designing an autoencoder,*** important structural and chemical properties captured by CrysAE from a large amount of available crystal graphs data helped in achieving low prediction ***,we design a feature selector that helps to interpret the model’s *** notably,when given a small amount of experimental data,CrysXPP is consistently able to outperform conventional DFT.A detailed ablation study establishes the importance of different design *** release the large pre-trained model *** believe by fine-tuning the model with a small amount of property-tagged data,researchers can achieve superior performance on various applications with a restricted data source.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分