咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Modelling the ZR Relationship ... 收藏

Modelling the ZR Relationship of Precipitation Nowcasting Based on Deep Learning

作     者:Jianbing Ma Xianghao Cui Nan Jiang 

作者机构:Chengdu University of Information TechnologyChengdu610225China Bournemouth UniversityBournemouthBH125BBUK 

出 版 物:《Computers, Materials & Continua》 (计算机、材料和连续体(英文))

年 卷 期:2022年第72卷第7期

页      面:1939-1949页

核心收录:

学科分类:0809[工学-电子科学与技术(可授工学、理学学位)] 08[工学] 

基  金:supported by Sichuan Provincial Key Research and Development Program(No.2021YFG0345,to J.Ma) the National Key Research and Development Program of China(No.2020YFA0608001,to J.Ma) 

主  题:Deep learning meteorology precipitation nowcasting weather forecasting ZR formula 

摘      要:Sudden precipitations may bring troubles or even huge harm to people’s daily *** a timely and accurate precipitation nowcasting is expected to be an indispensable part of our modern ***,the rainfall intensity estimation from weather radar is based on the relationship between radar reflectivity factor(Z)and rainfall rate(R),which is typically estimated by location-dependent experiential formula and arguably ***,in this paper,we propose a deep learning-based method to model the ZR *** evaluate,we conducted our experiment with the Shenzhen precipitation *** proposed a combined method of deep learning and the ZR relationship,and compared it with a traditional ZR equation,a ZR equation with its parameters estimated by the least square method,and a pure deep learning *** experimental results show that our combined model performsmuch better than the equation-based ZRformula and has the similar performance with a pure deep learning nowcasting model,both for all level precipitation and heavy ones only.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分