A novel coordinated control for NZEB clusters to minimize their connected grid overvoltage risks
作者机构:Division of Building Science and TechnologyCity University of Hong KongKowloonHong KongChina
出 版 物:《Building Simulation》 (建筑模拟(英文))
年 卷 期:2022年第15卷第10期
页 面:1831-1848页
核心收录:
学科分类:080802[工学-电力系统及其自动化] 0808[工学-电气工程] 08[工学]
基 金:supported by the Public Policy Research (PPR) Funding Scheme
主 题:net-zero energy building coordinated control optimization,genetic algorithm overvoltage quantification grid friendliness
摘 要:The increasing applications of net-zero energy buildings (NZEBs) will lead to more frequent and larger energy interactions with the connected power grid, thereby being able to result in severe grid overvoltage risks. Control optimization has been proven effective to reduce such risks. Existing controls have oversimplified the overvoltage quantification by simply using the aggregated power exchanges to represent the connected grid overvoltages. Ignoring the complex voltage influences among the grid nodes, such oversimplification can easily result in low-accuracy impact evaluations of the NZEB-grid energy interactions, thereby causing non-optimal/unsatisfying overvoltage mitigations. Therefore, this study proposes a novel coordinated control method in which a power-distribution-network model has been adopted for more accurate overvoltage quantification. Meanwhile, the battery operations of individual NZEBs are iteratively coordinated using a sequential optimization approach for achieving the global optimum with substantially reduced computation complexity. For verifications, the proposed coordinated control has been systematically compared with an uncoordinated control and a conventional coordinated control in grid overvoltage minimization. The study results show that the overvoltage improvements can reach 23.5% and 12.3% compared with the uncoordinated control and the conventional coordinated control, respectively. The reasons behind the improvements have also been analyzed in detail. The proposed coordinated control can be used in practice to improve NZEB-clusters’ grid friendliness.