GEOCHEMICAL CHARACTERISTICS OF PLATINUM GROUP ELEMENTS IN JINCHUAN SUPER-LARGE SULFIDE COPPER-NICKEL DEPOSIT, JINCHANG CITY, GANSU PROVINCE, CHINA
GEOCHEMICAL CHARACTERISTICS OF PLATINUM GROUP ELEMENTS IN JINCHUAN SUPER-LARGE SULFIDE COPPER-NICKEL DEPOSIT, JINCHANG CITY, GANSU PROVINCE, CHINA作者机构:Faculty of Geosciences and Resources China University of Geosciences Beoing 100083China Bureau of Geological Exploration for Nonferrous Metals in Northwest China Xi'an SX710054 China Institute of Mineral Resources Chinese Academy of Geological SciencesBeifing 100037 China Department of Geology Northwest University Xi'an SX 710069 China Faculty of Geosciences and Resources Chang'an University Xi'an SX 710054 China
出 版 物:《Geotectonica et Metallogenia》 (大地构造与成矿学(英文版))
年 卷 期:2005年第29卷第2期
页 面:152-163页
学科分类:070902[理学-地球化学] 081803[工学-地质工程] 0709[理学-地质学] 07[理学] 08[工学] 0818[工学-地质资源与地质工程]
基 金:the Major State Basic Research Program of People 's Republic of China(G1999043211)
主 题:platinum group elements copper-nickel sulfide deposit geochemical feature Jinchuan
摘 要:The platinum-group element geochemistry of rocks and ores from Jinchuan super-large copper-nickel sulfide deposit is systemically studied in this paper. The Cu/Pd mean ratio of Jinchuan intrusion is lower than that of original mantle magma, which indicates that these ultrabasic rocks were crystallized from magma that lost Pd in the form of melting segregation of sulfides. The PGE of the rocks show trend of partial melting, similar to that of mantle peridotite, which shows that magma formation occurs during rock-forming and ore-forming processes. The chondrite normalized PGE patterns of the rocks and ores are well related to each other, which signifies the signatures of multi-episode magmatic intrusion, melting and differentiation in the formation processes of rocks and ores. In addition, analyses about the relation between PGE and S, and study on Re-Os isotopes indicate that few contamination of the crustal substances occurred during the magmatic intrusion and the formation of deposit. However, contamination by crustal substances helps to supply part of the S for the enrichment of PGE. Meanwhile, the hydrothermal process is also advantageous for the enrichment of PGE, especially lbr Pt and Pd, due to deep melting segregation. The characteristic parameters (such as Pt/(Pt+Pd), (Pt+Pd)/(Ru+Ir+Os), Pd/Ir, Cu/(Ni+Cu), and so on.) for platinum-group elements for Jinchuan sulfide copper-nickel deposit show the same features as those for sulfide copper-nickel deposit related to basic magma, which also illustrates its original magma property representative of Mg-high tholeiite. Therefore, it is the marie (not ultramafic) magma that resulted in the formation of the superlarge sulfide copper-nickel deposit enriched in Cu and PGE. To sum up, the geochemical characteristics of platinum-group elements in rocks and ores from Jinchuan copper-nickel sulfide deposit are constrained by the continental rift tectonic environment, the parent magma features, the enriched mantel magma so