咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Network anomaly detection usin... 收藏

Network anomaly detection using deep learning techniques

作     者:Mohammad Kazim Hooshmand Doreswamy Hosahalli 

作者机构:Department of Computer ScienceMangalore UniversityMangaloreIndia 

出 版 物:《CAAI Transactions on Intelligence Technology》 (智能技术学报(英文))

年 卷 期:2022年第7卷第2期

页      面:228-243页

核心收录:

学科分类:08[工学] 0812[工学-计算机科学与技术(可授工学、理学学位)] 

主  题:artificial intelligence convolution neural network security 

摘      要:Convolutional neural networks(CNNs)are the specific architecture of feed-forward artificial neural *** is the de-facto standard for various operations in ma-chine learning and computer *** transform this performance towards the task of network anomaly detection in cyber-security,this study proposes a model using one-dimensional CNN *** authors approach divides network traffic data into transmission control protocol(TCP),user datagram protocol(UDP),and OTHER protocol categories in the first phase,then each category is treated *** training the model,feature selection is performed using the Chi-square technique,and then,over-sampling is conducted using the synthetic minority over-sampling technique to tackle a class imbalance *** authors method yields the weighted average f-score 0.85,0.97,0.86,and 0.78 for TCP,UDP,OTHER,and ALL categories,*** model is tested on the UNSW-NB15 dataset.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分