QSPR Studies on the Physicochemical Properties of Polychlorinated Diphenyl Sulfides——The Application of Theoretical Descriptors Derived from Electrostatic Potentials on Molecular Surface
QSPR Studies on the Physicochemical Properties of Polychlorinated Diphenyl Sulfides——The Application of Theoretical Descriptors Derived from Electrostatic Potentials on Molecular Surface作者机构:Zhejiang Surveying Institute of Estuary and Coast College of Biology & Environment EngineeringZhejiang Shuren University Hangzhou Environmental Monitoring Station
出 版 物:《Chinese Journal of Structural Chemistry》 (结构化学(英文))
年 卷 期:2015年第34卷第7期
页 面:995-1003页
核心收录:
学科分类:081704[工学-应用化学] 07[理学] 070304[理学-物理化学(含∶化学物理)] 08[工学] 0817[工学-化学工程与技术] 0703[理学-化学]
基 金:Supported by the Natural Science Foundation of Zhejiang Province(LY12B07013) the Education Research Project of Zhejiang Provincial Department(Y201329851)
主 题:polychlorinated diphenyl sulfides(PCDPSs) molecular electrostatic potential physicochemical property QSPR
摘 要:Based on the relationship between the quantitative structure and property(QSPR) of organic compounds, the surface electrostatic potential parameters of 29 polychlorinated diphenyl sulfides(PCDPSs) with experimental values were calculated and extracted, and Multiple Linear Regression(MLR) was used to model the linear relationship between the physicochemical properties(octanol/water partition coefficient, high performance liquid chromatography capacity factor) and molecular structure parameters of PCDPSs. The result shows that the main factors that affect the n-octanol/water partition coefficient and high performance liquid chromatography capacity factor are respectively the number of chlorin atoms substituted on the benzene ring(NCl) and the lowest unoccupied molecular orbital energy(ELUMO). Secondly, there are also molecular surface electrostatic potentials. This indicates that the molecular surface electrostatic potentials can effectively express the quantitative relationship between the physicochemical properties of PCDPSs and their molecule descriptions. The QSPR models established have strong stability and predictive ability. This also has proved the applicability of molecular surface electrostatic potential parameters in QSPR of PCDPSs.