Densely-connected neural networks for aspect term extraction
Densely-connected neural networks for aspect term extraction作者机构:School of Software and Microelectronics Peking University MOE Key Lab of Computational Linguistics School of Electronics Engineering and Computer SciencePeking University National Engineering Research Center for Software Engineering (Peking University)
出 版 物:《Science China(Information Sciences)》 (中国科学:信息科学(英文版))
年 卷 期:2022年第65卷第6期
页 面:264-266页
核心收录:
学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 0808[工学-电气工程] 081203[工学-计算机应用技术] 08[工学] 081104[工学-模式识别与智能系统] 0835[工学-软件工程] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)]
基 金:supported by National Natural Science Foundation of China (Grant No. 61433015)
主 题:aspect term extraction recurrent neural network self-attention densely-connected network double word embeddings Aspect-Based Sentiment Analysis deep learning sequence labeling
摘 要:Dear editor,Aspect term extraction(ATE) is a sub-task of aspect-based sentiment analysis, which aims to extract opinionated aspect terms from user reviews. For example, in a laptop domain review: “Boot time is super fast, boot time is an aspect, and the sentiment towards it is positive, which can be inferred from super fast.