咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Optimized Convolutional Neural... 收藏

Optimized Convolutional Neural Network Models for Skin Lesion Classification

作     者:Juan Pablo Villa-Pulgarin Anderson Alberto Ruales-Torres Daniel Arias-GarzónMario Alejandro Bravo-Ortiz Harold Brayan Arteaga-Arteaga Alejandro Mora-RubioJesus Alejandro Alzate-Grisales Esteban Mercado-Ruiz M.Hassaballah Simon Orozco-Arias Oscar Cardona-Morales Reinel Tabares-Soto 

作者机构:Department of Electronics and AutomationUniversidad Autónoma deManizalesManizales170001Colombia SEDMATECCorporación Universitaria Autónoma de Nari駉Pasto520002Colombia Department of Computer ScienceFaculty of Computers and InformationSouth Valley UniversityQena83523Egypt Department of Computer ScienceUniversidad Autónoma de ManizalesManizales170001Colombia Department of Systems and InformaticsUniversidad de CaldasManizales170001Colombia 

出 版 物:《Computers, Materials & Continua》 (计算机、材料和连续体(英文))

年 卷 期:2022年第70卷第2期

页      面:2131-2148页

核心收录:

学科分类:1002[医学-临床医学] 100214[医学-肿瘤学] 10[医学] 

基  金:This research is supported by the Universidad Autónoma de Manizales Manizales Colombia under project No.589-089 

主  题:Deep learning skin lesion convolutional neural network data augmentation transfer learning 

摘      要:Skin cancer is one of themost severe diseases,andmedical imaging is among themain tools for cancer *** images provide information on the evolutionary stage,size,and location of tumor *** paper focuses on the classification of skin lesion images considering a framework of four experiments to analyze the classification performance of Convolutional Neural Networks(CNNs)in distinguishing different skin *** CNNs are based on transfer learning,taking advantage of ImageNet ***,in each experiment,different workflow stages are tested,including data augmentation and fine-tuning *** CNN models based on DenseNet-201,Inception-ResNet-V2,and Inception-V3 are proposed and compared using the HAM10000 *** results obtained by the three models demonstrate accuracies of 98%,97%,and 96%,***,the best model is tested on the ISIC 2019 dataset showing an accuracy of 93%.The proposed methodology using CNN represents a helpful tool to accurately diagnose skin cancer disease.

读者评论 与其他读者分享你的观点