Local generalized empirical estimation of regression
Local generalized empirical estimation of regression作者机构:Department of Statistics University of California at Berkeley CA 94720 USA
出 版 物:《Science China Mathematics》 (中国科学:数学(英文版))
年 卷 期:2004年第47卷第1期
页 面:114-127页
核心收录:
学科分类:02[经济学] 0202[经济学-应用经济学] 020208[经济学-统计学] 07[理学] 0714[理学-统计学(可授理学、经济学学位)] 070103[理学-概率论与数理统计] 0701[理学-数学]
基 金:This work was supported in part by the National Natural Science Foundation of China(Grant Nos.10001004 and 39930160) by the US NSF(Grant No.DMS-9971301)
主 题:boundary adaptive Dirac 5-function local polynomial local empirical Nadaraya-Watson estimator
摘 要:Letf(x) be the density of a design variableX andm(x) = E[Y∣X = x] the regression function. Thenm(x) = G(x)/f(x), whereG(x) = rn(x)f(x). The Dirac δ-function is used to define a generalized empirical functionG n(x) forG(x) whose expectation equalsG(x). This generalized empirical function exists only in the space of Schwartz distributions, so we introduce a local polynomial of orderp approximation toG n(.) which provides estimators of the functionG(x) and its derivatives. The densityf(x) can be estimated in a similar manner. The resulting local generalized empirical estimator (LGE ) ofm(x) is exactly the Nadaraya-Watson estimator at interior points whenp = 1, but on the boundary the estimator automatically corrects the boundary effect. Asymptotic normality of the estimator is established. Asymptotic expressions for the mean squared errors are obtained and used in bandwidth selection. Boundary behavior of the estimators is investigated in details. We use Monte Carlo simulations to show that the proposed estimator withp = 1 compares favorably with the Nadaraya-Watson and the popular local linear regression smoother.