咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >融合多源信息的知识表示学习 收藏

融合多源信息的知识表示学习

Knowledge Representation Learning Based on Multi-source Information Combination

作     者:夏光兵 李瑞轩 辜希武 刘伟 XIA Guangbing;LI Ruixuan;GU Xiwu;LIU Wei

作者机构:华中科技大学计算机科学与技术学院武汉430074 

出 版 物:《计算机科学与探索》 (Journal of Frontiers of Computer Science and Technology)

年 卷 期:2022年第16卷第3期

页      面:591-597页

核心收录:

学科分类:081203[工学-计算机应用技术] 08[工学] 0835[工学-软件工程] 0812[工学-计算机科学与技术(可授工学、理学学位)] 

基  金:国家重点研发计划(2016QY01W0202) 国家自然科学基金(U1836204,U1936108) 

主  题:知识表示学习 实体描述 层次类型 拓扑结构 

摘      要:在知识图谱中,实体的文本描述信息、实体的层次类型信息和图的拓扑结构信息中隐藏着丰富的内容,它们可以形成对原始三元组的有效补充,帮助提高知识图谱各种任务的效果。为了充分利用这些多源异质信息,首先通过一维卷积神经网络嵌入文本描述信息,然后根据实体的层次类型信息构建投影矩阵,将三元组中的实体向量和实体的描述向量映射到特定的关系空间中来约束实体的语义信息,再基于图注意力机制融合图的拓扑结构信息,计算不同邻接点对实体的影响。在图注意力层中,计算了实体间的多跳关系来帮助改善数据稀疏的问题。最后,通过二维卷积神经网络来捕获不同维度间的全局信息,进一步提高模型的性能。链接预测实验结果表明,基于多源信息组合的知识表示学习模型(MCKRL)能够充分利用三元组以外的多源异质信息,因而相比于其他基线模型,该模型在链接预测任务上取得了更好的结果。

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分