Voltage-controllable magnetic skyrmion dynamics for spiking neuron device applications
Voltage-controllable magnetic skyrmion dynamics for spiking neuron device applications作者机构:Key Laboratory of Electromagnetic Wave Information Technology and Metrology of Zhejiang ProvinceCollege of Information EngineeringChina Jiliang UniversityHangzhou 310018China
出 版 物:《Chinese Physics B》 (中国物理B(英文版))
年 卷 期:2022年第31卷第1期
页 面:664-668页
核心收录:
学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 07[理学] 070205[理学-凝聚态物理] 081104[工学-模式识别与智能系统] 08[工学] 0835[工学-软件工程] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)] 0702[理学-物理学]
基 金:the National Natural Science Foundation of China(Grant Nos.11902316,51902300,and 11972333) the Natural Science Foundation of Zhejiang Province,China(Grant Nos.LQ19F010005,LY21F010011,and LZ19A020001)
主 题:magnetic skyrmion leaky-integrate-fire multiferroic heterostructure artificial neuron
摘 要:Voltage-controlled magnetic skyrmions have attracted special attention because they satisfy the requirements for well-controlled high-efficiency and energy saving for future skyrmion-based neuron device *** this work,we propose a compact leaky-integrate-fire(LIF)spiking neuron device by using the voltage-driven skyrmion dynamics in a multiferroic nanodisk *** skyrmion dynamics is controlled by well tailoring voltage-induced piezostrains,where the skyrmion radius can be effectively modulated by applying the piezostrain *** the biological neuron,the proposed skyrmionic neuron will accumulate a membrane potential as skyrmion radius is varied by inputting the continuous piezostrain spikes,and the skyrmion radius will return to the initial state in the absence of ***,this skyrmion radius-based membrane potential will reach a definite threshold value by the strain stimuli and then reset by removing the *** the LIF neuronal functionality and the behaviors of the proposed skyrmionic neuron device are elucidated through the micromagnetic simulation *** results may benefit the utilization of skyrmionic neuron for constructing the future energy-efficient and voltage-tunable spiking neural networks.