Distributed Kalman filter for UWB/INS integrated pedestrian localization under colored measurement noise
作者机构:School of Electrical EngineeringUniversity of JinanJinanChina Department of Electronics EngineeringUniversidad de GuanajuatoSalamancaMexico State Key Laboratory of Information Engineering in SurveyingMapping and Remote SensingWuhan UniversityWuhanChina Shandong Beiming Medical Technology Co.LtdJinanChina.
出 版 物:《Satellite Navigation》 (卫星导航(英文))
年 卷 期:2021年第2卷第1期
页 面:305-314页
核心收录:
学科分类:080904[工学-电磁场与微波技术] 0810[工学-信息与通信工程] 080902[工学-电路与系统] 0809[工学-电子科学与技术(可授工学、理学学位)] 08[工学] 080401[工学-精密仪器及机械] 081105[工学-导航、制导与控制] 0804[工学-仪器科学与技术] 080402[工学-测试计量技术及仪器] 081001[工学-通信与信息系统] 0825[工学-航空宇航科学与技术] 0811[工学-控制科学与工程]
基 金:NSFC Grant 61803175,Shandong Key R&D Program 2019JZZY021005 Mexican Consejo Nacional de Cienciay Tecnologıa Project A1-S-10287 Grant CB2017-2018
主 题:Distributed filtering Kalman filter Colored measurement noise Human localization
摘 要:Colored Measurement Noise(CMN)has a great impact on the accuracy of human localization in indoor environments with Inertial Navigation System(INS)integrated with Ultra Wide Band(UWB).To mitigate its influence,a distributed Kalman Filter(dKF)is developed for Gauss-Markov CMN with switching Colouredness Factor Matrix(CFM).In the proposed scheme,a data fusion filter employs the difference between the INS-and UWB-based distance *** main filter produces a final optimal estimate of the human position by fusing the estimates from local *** effect of CMN is overcome by using measurement differencing of noisy *** tests show that the proposed dKF developed for CMN with CFM can reduce the localization error compared to the original dKF,and thus effectively improve the localization accuracy.