咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Bias correction of sea surface... 收藏

Bias correction of sea surface temperature retrospective forecasts in the South China Sea

Bias correction of sea surface temperature retrospective forecasts in the South China Sea

作     者:Guijun Han Jianfeng Zhou Qi Shao Wei Li Chaoliang Li Xiaobo Wu Lige Cao Haowen Wu Yundong Li Gongfu Zhou Guijun Han;Jianfeng Zhou;Qi Shao;Wei Li;Chaoliang Li;Xiaobo Wu;Lige Cao;Haowen Wu;Yundong Li;Gongfu Zhou

作者机构:School of Marine Science and TechnologyTianjin UniversityTianjin 300072China Tianjin Key Laboratory for Oceanic MeteorologyTianjin 300074China 

出 版 物:《Acta Oceanologica Sinica》 (海洋学报(英文版))

年 卷 期:2022年第41卷第2期

页      面:41-50页

核心收录:

学科分类:07[理学] 0707[理学-海洋科学] 

基  金:The National Key Research and Development Program of China under contract No.2018YFC1406206 the National Natural Science Foundation of China under contract No.41876014 

主  题:sea surface temperature retrospective forecasts bias correction backpropagation neural network empirical orthogonal function analysis South China Sea 

摘      要:Offline bias correction of numerical marine forecast products is an effective post-processing means to improve forecast accuracy. Two offline bias correction methods for sea surface temperature(SST) forecasts have been developed in this study: a backpropagation neural network(BPNN) algorithm, and a hybrid algorithm of empirical orthogonal function(EOF) analysis and BPNN(named EOF-BPNN). The performances of these two methods are validated using bias correction experiments implemented in the South China Sea(SCS), in which the target dataset is a six-year(2003–2008) daily mean time series of SST retrospective forecasts for one-day in advance, obtained from a regional ocean forecast and analysis system called the China Ocean Reanalysis(CORA),and the reference time series is the gridded satellite-based SST. The bias-correction results show that the two methods have similar good skills;however, the EOF-BPNN method is more than five times faster than the BPNN method. Before applying the bias correction, the basin-wide climatological error of the daily mean CORA SST retrospective forecasts in the SCS is up to-3°C;now, it is minimized substantially, falling within the error range(±0.5°C) of the satellite SST data.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分