Equidistribution of Expanding Translates of Curves in Homogeneous Spaces with the Action of(SO(n,1))^(k)
Equidistribution of Expanding Translates of Curves in Homogeneous Spaces with the Action of(SO(n, 1))k作者机构:College of MathematicsSichuan UniversityChengdu 610000P.R.China
出 版 物:《Acta Mathematica Sinica,English Series》 (数学学报(英文版))
年 卷 期:2022年第38卷第1期
页 面:205-224页
核心收录:
学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学]
基 金:Supported by NSFC(Grant No.11801384) the Fundamental Research Funds for the Central Universities(Grant No.YJ201769)
主 题:Equidistribution homogeneous spaces Ratner's theorem
摘 要:Let X=G/Γbe a homogeneous space with ambient group G containing the group H=(SO(n,1))^(k)and x∈X be such that Hx is dense in *** an analytic curve?:I=[a,b]→H,we will show that ifφsatisfies certain geometric condition,then for a typical diagonal subgroup A={a(t):t∈R}■H the translates{a(t)?(I)x:t0}of the curve?(I)x will tend to be equidistributed in X as t→+∞.The proof is based on Ratner s theorem and linearization technique.