A statistical approach for enhancing security in VANETs with efficient rogue node detection using fog computing
作者机构:School of Computer ScienceUniversity of OklahomaNormanOKUSA
出 版 物:《Digital Communications and Networks》 (数字通信与网络(英文版))
年 卷 期:2022年第8卷第5期
页 面:814-824页
核心收录:
学科分类:0810[工学-信息与通信工程] 08[工学] 081001[工学-通信与信息系统]
主 题:VANETs Rogue nodes Fog computing Intrusion detection
摘 要:Rogue nodes broadcasting false information in beacon messages may lead to catastrophic consequences in Vehicular Ad Hoc Networks(VANETs).Previous researchers used cryptography,trust scores,or past vehicle data to detect rogue nodes;however,these methods suffer from high processing delay,overhead,and False–Positive Rate(FPR).We propose herein Greenshield s traffic model–based fog computing scheme called Fog–based Rogue Node Detection(F–RouND),which dynamically utilizes the On–Board Units(OBUs)of all vehicles in the region for rogue node *** aim to reduce the data processing delays and FPR in detecting rogue nodes at high vehicle *** performance of the F–RouND framework was evaluated via *** show that the F–RouND framework ensures 45%lower processing delays,12%lower overhead,and 36%lower FPR at the urban scenario than the existing rogue node detection schemes even when the number of rogue nodes increases by up to 40%in the region.