The Commutators of Strongly Singular Integral Operators on the Weighted Hardy Spaces
The Commutators of Strongly Singular Integral Operators on the Weighted Hardy Spaces作者机构:School of Mathematical SciencesXiamen UniversityXiamen 361005P.R.China
出 版 物:《Acta Mathematica Sinica,English Series》 (数学学报(英文版))
年 卷 期:2021年第37卷第12期
页 面:1909-1920页
核心收录:
学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学]
基 金:Supported by the NNSF of China(Grant Nos.11771358 11871101 12171399)
主 题:Strongly singular Calderon-Zygmund operators commutators Muckenhoupt weights BMO spaces Hardy spaces
摘 要:Let T be a strongly singular Calderon-Zygmund operator and b∈L_(loc)(R^(n)).This article finds out a class of non-trivial subspaces BMO_(ω,p,u)(R^(n))of BMO(R^(n))for certain ω∈A_(1),0p≤1 and 1u≤∞,such that the commutator[b,T]is bounded from weighted Hardy space H_(ω)^(p)(R^(n))to weighted Lebesgue space L_(ω)^(p)(R^(n))if b∈BMO_(ω,p,∞)(R^(n)),and is bounded from weighted Hardy space H_(ω)^(p)(R^(n)) to itself if T^(∗)1=0 and b∈BMO_(ω,p,u)(R^(n))for 1u2.