NONPARAMETRIC APPROACH TO IDENTIFYING NARX SYSTEMS
NONPARAMETRIC APPROACH TO IDENTIFYING NARX SYSTEMS作者机构:Key Laboratory of Systems and Control Institute of Systems Science Academy of Mathematics and Systems Science Chinese Academy of Sciences
出 版 物:《Journal of Systems Science & Complexity》 (系统科学与复杂性学报(英文版))
年 卷 期:2010年第23卷第1期
页 面:3-21页
核心收录:
学科分类:02[经济学] 0202[经济学-应用经济学] 020208[经济学-统计学] 07[理学] 0714[理学-统计学(可授理学、经济学学位)] 070103[理学-概率论与数理统计] 0701[理学-数学]
基 金:supported by the National Natural Science Foundation of China under Grant Nos. 60821091and 60874001 Grant from the National Laboratory of Space Intelligent Control Guozhi Xu Posdoctoral Research Foundation
主 题:α-mixing geometrically ergodic Markov chains NARX nonparametric recursive estimate stochastic approximation strongly consistent.
摘 要:This paper considers identification of the nonlinear autoregression with exogenous inputs(NARX system).The growth rate of the nonlinear function is required be not faster than linear withslope less than *** value of f(·) at any fixed point is recursively estimated by the stochasticapproximation (SA) algorithm with the help of kernel *** consistency of the estimatesis established under reasonable conditions,which,in particular,imply stability of the *** simulation is consistent with the theoretical analysis.