咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Apollo: Rapidly Picking the Op... 收藏

Apollo: Rapidly Picking the Optimal Cloud Configurations for Big Data Analytics Using a Data-Driven Approach

作     者:Yue-Wen Wu Yuan-Jia Xu Heng Wu Lin-Gang Su Wen-Bo Zhang Hua Zhong Yue-Wen Wu;Yuan-Jia Xu;Heng Wu;Lin-Gang Su;Wen-Bo Zhang;Hua Zhong

作者机构:University of Chinese Academy of SciencesBeijing 100049China State Key Laboratory of Computer ScienceInstitute of SoftwareChinese Academy of SciencesBeijing 100190China 

出 版 物:《Journal of Computer Science & Technology》 (计算机科学技术学报(英文版))

年 卷 期:2021年第36卷第5期

页      面:1184-1199页

核心收录:

学科分类:081203[工学-计算机应用技术] 08[工学] 0835[工学-软件工程] 0812[工学-计算机科学与技术(可授工学、理学学位)] 

基  金:supported by the National Key Research and Development Program of China under Grant No.2017YFB1001804 

主  题:big data analytics cloud configuration data driven 

摘      要:Big data analytics applications are increasingly deployed on cloud computing infrastructures,and it is still a big challenge to pick the optimal cloud configurations in a cost-effective *** this paper,we address this problem with a high accuracy and a low *** propose Apollo,a data-driven approach that can rapidly pick the optimal cloud configurations by reusing data from similar *** first classify 12 typical workloads in BigDataBench by characterizing pairwise correlations in our offline *** a new workload comes,we run it with several small datasets to rank its key characteristics and get its similar *** on the rank,we then limit the search space of cloud configurations through a classification *** last,we leverage a hierarchical regression model to measure which cluster is more suitable and use a local search strategy to pick the optimal cloud configurations in a few extra *** evaluation on 12 typical workloads in HiBench shows that compared with state-of-the-art approaches,Apollo can improve up to 30%search accuracy,while reducing as much as 50%overhead for picking the optimal cloud configurations.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分